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Summary
Microvesicles are members of the family of extracellular vesicles shed 
from the plasma membrane of activated or apoptotic cells. Microve-
sicles were initially characterised by their pro-coagulant activity and 
described as “microparticles”. There is mounting evidence revealing a 
role for microvesicles in intercellular communication, with particular 
relevance to hemostasis and vascular biology. Coupled with this, the 
potential of microvesicles as meaningful biomarkers is under intense 
investigation. This Position Paper will summarise the current know-
ledge on the mechanisms of formation and composition of microve-

sicles of endothelial, platelet, red blood cell and leukocyte origin. This 
paper will also review and discuss the different methods used for their 
analysis and quantification, will underline the potential biological 
roles of these vesicles with respect to vascular homeostasis and 
thrombosis and define important themes for future research.
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1. Introduction

Microvesicles (MVs) belong to the family of extracellular vesicles 
(EVs), including exosomes and apoptotic bodies, shed from acti-
vated or apoptotic cells. These extracellular vesicles are distin-

guished on the basis of their subcellular origin, their size, their 
content and the mechanism leading to their formation.

MVs were initially characterised by their pro-coagulant activity. 
Seminal work demonstrated that platelet-deprived plasma could 
support coagulation and that its clotting property was abrogated 
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by high-speed centrifugation (1, 2). Wolf identified the phos-
pholipid-containing material, derived from platelets and capable 
of supporting coagulation, as platelet dust, subsequently called 
microparticles (2, 3). For these historical reasons, the term micro-
particle is the most commonly employed to refer to extracellular 
vesicles generated from platelets in the fields of haemostasis and 
thrombosis. The term microvesicle, however, is utilised within this 
review for consistency, and refers to extracellular vesicles produced 
by cytoplasmic membrane blebbing and shedding (2, 4), and is dis-
tinguishable from the vesicles stored in multivesicular bodies or 
alpha-granules, called exosomes (5, 6).

Today, MVs are interesting biomarkers with potential prognosis 
value as their content (proteins, active lipids, miRNA) (7, 8) varies 
with the inducer that initiated their shedding and with the severity 
of the disease (9–14). In addition, MVs emerge as new regulators 
of cellular crosstalk, in particular in vascular biology.

The present Position Paper, rather than systematically review-
ing the literature, will critically summarise the current knowledge 
on the mechanisms of formation of MVs, their cellular origin, 
their composition, and the methods used for their analysis and 
quantification; potential pitfalls in MV quantification and func-
tional effects will be discussed. In addition, this review will en-
lighten the potential biological roles of these vesicles with respect 
to vascular homeostasis and thrombosis.

2. Microvesicle formation
2.1. Phospholipid transbilayer and phosphatidylserine 
(PS) exposure

The asymmetry of phospholipid distribution across the plasma 
membrane is a common feature of resting eukaryotic cells. Con-
versely, loss of asymmetry is a driving force for plasma membrane 
remodelling, i. e. lipid motion and membrane deformation. Modi-
fication of the monolayer content in diffusible molecules alters 
lipid packing and causes membrane instability, regulated by 
sphingomyelinases that produce diffusible ceramides and prompt 
PS and phosphatidylcholine translocation and membrane budding 
(15–17). Whether ceramides and inner-leaflet interacting anne-
xins also prompt agonist-driven MV release is unknown (18, 19). 
Other membrane adaptors, like arrestin-domain-containing-pro-
tein 1, appear to mediate the release of small plasma membrane 
vesicles of undetermined composition (20). The recently identified 
crowding effect of integral asymmetric proteins with large ectodo-
mains and smaller intracellular ones also favours membrane ben-
ding in liposomes (21). Whether integrins that are highly dis-
tributed in platelets, endothelial cells or leukocytes take part in 
crowding-driven budding effects remains unknown (22, 23).

In resting cells, spontaneous phospholipid transbilayer trans-
port is very slow (1 lipid/24 hours) (15, 24). Asymmetry is the re-
sult of the opposing activities of ATP-dependent phospholipid 
transporters governing inward (flippases) or outward (floppases) 
translocation and of non-specific bi-directional ATP-independent 
lipid transporters (scramblases). During agonist-induced calcium 
cell stimulation, PS exposure results from i) calcium-dependent 

inhibition of flippase and ii) its rapid translocation exerted by flop-
pase(s) and/or scramblase(s) (25–27). The calcium-dependent 
proteolysis of the cytoskeleton leads to an eventual transient im-
balance in phospholipid density between the two leaflets driven by 
the swift PS egress and a lower phosphatidylcholine and sphingo-
myeline reverse transport (28, 29). This triggers local instability of 
the plasma membrane and shedding of MVs that are released 
upon raft clustering (30–32). The calcium-dependent channel 
TMEM16F (ANO6), an anoctamin, has recently been demon-
strated to play a pivotal role in calcium-induced phospholipid 
scrambling in the release of MVs exposing PS (25, 33–36). Inter-
estingly, TMEM16F is mutated in Scott Syndrome, a rare human 
inherited bleeding disorder caused by defective platelet PS mem-
brane exposure and MV shedding also evidenced in red cells and 
leukocytes (34, 37–40).

The existing data in isolated cells support the concept of MVs 
exposing PS as a consequence of membrane randomisation. PS 
translocation and MV release are both defective in response to 
procoagulant agonists in Scott syndrome, suggesting that PS expo-
sure is a prerequisite to MV shedding (41, 42). Moreover, anne-
xin-5, a high affinity PS ligand, inhibits MV release from stimu-
lated cells (43). Finally, PS exposure and PS-positive MV shedding 
show similar time and concentration dependence whilst agonists 
induce distinct MV protein signatures (8, 44–47).

Important proportions of MVs lacking externalised PS, but ex-
pressing cellular markers, have been reported in cell supernatants 
and in plasma (4, 46, 48–50). However little is known about the 
nature and mechanisms of these vesicles. These observations may 
result from the heterogeneous nature of MVs. They may also be 
the result of altered membrane fluidity by exogenous proteins in 
addition to differences in detection thresholds (15, 43, 51). How-
ever, one cannot exclude artefacts in MV assessment/labelling, in-
cluding contamination with other extracellular vesicles or pro-
teins, absence of calcium that dampen PS detection (annexin, lact-
adherin, Del-1) (43, 52, 53) or prompt fusion with other vesicles or 
proteins (54–57). This does not rule out the existence of these MVs 
derived from an, as yet, undetermined mechanism of membrane 
release.

The use of annexin V positivity to identify MV populations in 
flow cytometry analysis is widespread. However, annexin V labe-
ling could be skewed due to the presence of phosphatidylserine on 
lipoproteins (58). Furthermore, the possibility of the existence of 
PS negative MVs may mean that a proportion of MVs are ex-
cluded from analysis should this criteria be applied. This popu-
lation may indeed differ in proportion and function depending on 
the parent cell. The possibility remains that by excluding PS 
negative MVs (or those MVs that bind annexin V below the detec-
tion limit of flow cytometers) an important sub-population of 
MVs will remain ill-described and unstudied. In addition, it is well 
known that apoptotic bodies have exposed PS on their surface and 
caution must be taken when analysing PS positive MV populations 
to ensure there is no contamination with vesicles released via 
apoptosis.

Ridger, Boulanger et al. Microvesicles in vascular homeostasis and diseases
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2.2 Cytoskeleton reorganisation and MV formation

The cytoskeleton and hydrostatic pressure equilibrate plasma 
membrane tension whereas curvature instability of the bilayer 
drives membrane shape fluctuations and budding. In resting pla-
telets, αIIbβ3-mediated destabilisation of the actin cytoskeleton 
promotes the release of procoagulant MVs, confirming that cytos-
keleton integrity is critical for membrane asymmetry (59). The 
role of cytoskeleton reorganisation in MV shedding was ascer-
tained by inhibition of calcium-dependent proteases or actin de-
polymerisation that abolish MV release in stimulated platelets and 
megakaryocytes (60, 61) (▶ Figure 1). Depending on the cell lin-
eage, agonist-induced Ca2+ influx prompts the protease activity of 
caspases and/or calpains that cleave typical cytoskeleton proteins 
like filamin, gelsolin, talin and myosin (60, 62). Calpains are criti-
cal for platelet or neutrophil shedding, caspases for MV generation 
in vascular cells under apoptotic and non-apoptotic conditions 
(30, 63). Caspases mainly act through Rho kinase-dependent 
phosphorylation of the myosin light chain kinases (MLCK) 
(64–67), although Rho-kinase dependent endothelial MV 
formation can be independent of caspase activation (68). The re-
lease of neutrophil MVs is caspase-8 dependent and requires 
phosphokinase A and MLCK (69). In tumour cells, the 
Rho–driven cytoskeleton reorganisation and its relevance to exag-
gerated MV shedding identifies the pivotal role of small GTP-
binding proteins, such as Rab22A (70) or ARF6 (71). Finally, cas-
pase-3 directly triggers Xkr8, a putative scramblase or caspase 
transducer that promotes PS exposure in the membrane of apop-
totic cells (72).

3. Microvesicles methodology update
3.1 Detection of MV

Methodologies to study MVs can be classified based on detection 
of single or multiple MVs. The most common methods to study 
single MVs are flow cytometry, tunable resistive pulse sensing 
(TRPS), and nanoparticle tracking analysis (NTA). Methods to 
study multiple MVs include immunocapture-assays, functional as-
says, and hybrid assays that involve capture followed by function 
or phenotype testing. The latter, “bulk assays” offer potential for 
high-throughput processing of clinical samples, may be sensitive 
enough to take the functional contribution of small MVs into ac-
count, and can be more cost-effective and user-friendly than single 
vesicle detection-based methods. However, single MV detection 
methods offer information on size or cellular origin of single MV, 
and thus may be more suitable to determine the presence of rare 
subtypes of MVs in a mixed population.

More recently, surface plasmon resonance imaging combined 
with protein microarray technology has been applied to MVs (73). 
An array of antibodies are printed on a gold chip, and antibody 
captured MVs induce a change in refractive index. Potentially, sur-
face plasmon resonance imaging may be useful for parallel and 
multiple analysis of MVs in clinical body fluids (74).

3.2 Pitfalls in MV measurements

Among the single particle-based method, flow cytometry remains 
the most commonly used technique with the highest potential to 
determine the cellular origin of single MV (75–77). Over the past 
few years, significant improvements have been made regarding the 
sensitivity of flow cytometry to detect single vesicles with a diam-
eter of < 300 nm, which have further established this methodology 
as the most promising tool for routine enumeration of MV subsets 
(78–80). Because a method has been developed to derive informa-
tion on absolute size (diameter) and refractive index of single MVs 
and similar-sized particles from flow cytometry light scatter sig-
nals, the comparison of absolute measurement results on MV be-
tween instruments and institutes may come within reach (81, 82). 
However, it is important to note that accurate detection of MVs by 
flow cytometry is still a challenge, in particular for circulating MV 
analysis (56, 83–85).

NTA measures the Brownian motion of single particles in a 
laser beam (86) and is a valuable tool for the measurement of size 
distribution of MVs. The light scattered from single particles is vis-
ualised by microscopy, and the movement of single particles is 
monitored and recorded in time. Although NTA detects particles 
with a diameter < 100 nm, the resolution is low (75). The main 
limitation of NTA, however, is the inability to distinguish MV 
from similar-sized particles in suspension (i. e. debris). The ability 
to use the fluorescent mode offers the opportunity to specifically 
identify MVs. An alternative method, TRPS, is based on imped-
ance to monitor individual MVs with a diameter of 80–1,000 nm 
or more, as they move through tunable nanopores (87). Particles 
passing the pore generate a change in the electric resistance, thus 
providing information on diameter, surface charge, concentration, 
and zeta potential of single particles. The major disadvantage of 
TRPS is that it cannot distinguish between MVs and similar sized 
particles such as chylomicrons or protein aggregates.

Each of the above methods has advantages and disadvantages. 
Therefore, to confirm the presence of MVs, ISEV recommends the 
use of a second independent method (88) [also see Section 9]. As 
an independent method, often transmission electron microscopy 
is used, because this technique has a high resolution and can dis-
tinguish intact MVs from non-MVs at the level of a single particle.

3.3 Standardisation of MV measurements

Standardisation is mandatory to allow evaluation of the true clini-
cal relevance of MV at a multicentre level, and should be accompa-
nied by continuous improvement of methods. Flow cytometry is 
the first method to benefit from standardisation efforts coordi-
nated by the International Society on Thrombosis and Haemo-
stasis (ISTH) Standardisation Committee on Vascular Biology. 
Thus, several bead-based comparison studies have been perform-
ed to standardize light scatter gates for MV selection between in-
struments (76, 89). At present, additional standardisation strat-
egies are being tested based on either absolute vesicle size approxi-
mation or fluorescence (90). In 2015, a collaborative workshop 
was initiated to standardise MV detection by flow cytometry 
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(www.evflowcytometry.org). In this workshop the knowledge from 
three international societies is combined: International Society on 
Extracellular Vesicles provides knowledge on vesicles, International 
Society on Advancement of Cytometry provides knowledge on de-
tection of MV by flow cytometry, and the International Society on 
Thrombosis and Haemostasis contributes with expertise on blood 
collection, handling and storage. Similarly, attempts are on-going to 
standardize TRPS measurements and coagulation.

For a long time measurement of (single) vesicles was consider-
ed as measuring “the tip of the iceberg”. Because the sensitivity of 
vesicle detection is improving rapidly, there is now an urgent need 
for developing novel guidelines regarding collection, handling and 
storage, as required for reliable biorepositories. Recently, a start has 
been made in developing such guidelines for human blood, urine 
and saliva using sensitive MV detection methods ((91); www.
metves.eu), but more research is clearly required. Furthermore, la-
belling protocols for flow cytometry require updates and improve-
ments, and standards and validation protocols need to be devel-
oped. Finally, training and education are now being developed, 
such as the online course developed by ISEV on the “Basics of 

Extracellular Vesicles”, which is open access (https://www.course
ra.org/learn/extracellular-vesicles). In addition, the ISTH Acad-
emy has recorded two webinars on MVs. Both courses include up-
to-date information on isolation and detection of MVs.

3.4 MV isolation and pitfalls in testing their 
 functional effects

One of the most important considerations when isolating MVs 
from blood is the presence of contaminating platelets. When com-
parative studies are performed, sample preparation must be ident-
ical in order that any artefact is present in all samples (91). In most 
studies, MVs are isolated and/or concentrated using protocols in-
volving either initial low or intermediate multiple centrifugations, 
combined with ultracentrifugation, density gradient centrifu-
gation, or combinations thereof. These MV populations are im-
pure and contaminated by plasma or serum proteins hence affect-
ing the outcome of functional or –omics measurements (▶ Table 
1). To overcome these limitations, size exclusion chromatography 
has been adopted recently by many investigators to separate MVs 
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Figure 1: Floppase activity and facilitated transport of phosphati-
dylserine by TMEM-16 F (ANO-6) and procoagulant MV shedding. At 
rest, phosphatidylserine (PS) is translocated to the inner leaflet by flippase 
activity. Right panel: Upon cell activation and calcium-dependent flippase in-
hibition, PS translocation to the outer leaflet is driven by TMEM-16F (yellow 
shape) and local K+ efflux prompts cell shrinkage and re-shaping. High cal-
cium concentration promoted by Stored Operated Channels (SOCE) favours 
the constitution of TMEM16-F platforms by oligomerisation or interaction 

with other receptors like P2XR in the case of long term exposure to Ca2+ 
(green shape). Transient phospholipid imbalance between leaflets and the 
proteolysis of cytoskeleton by calpains and/or caspases lead to facilitated 
procoagulant MV shedding. Putative scramblase transducers as Xkr8 are ac-
tivated by caspases and would trigger enhanced floppase activity as de-
scribed in apoptotic cells (see text for details). Exposed PS catalyses the as-
sembly of blood coagulation complexes at cell and MV surface (E: Enzyme, S: 
Substrate, CF cofactor).
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from soluble proteins in cell preparation ((92); www.metves.eu), 
thereby facilitating for example detection of MVs by electron 
microscopy as well as –omics studies of EVs. More quantitative in-
formation is clearly needed about the extent of MV recovery for 
each isolation method (93).

Several questions may arise when testing MV functional effects 
either in vitro or in vivo. First, the choice of MV concentrations 
should be of physiological or pathological relevance. Surprisingly, 
few studies evaluate the effects of more than one concentration of 
MVs, although previous reports point out the paradoxical effects 
of different MV concentrations (94). Second, the experimental de-
sign should include robust controls, including the supernatant 
above the isolated MV pellet. Control experiments using saline-
buffered solutions may be also an additional control. When cyto-
kines or inhibitors are used to trigger MV release in vitro, caution 
should be taken to remove these compounds from the enriched 
vesicle preparation, for example by dialysis or size exclusion chro-
matograph, to avoid experimental bias. The presence of large 
numbers of MVs and exosomes in serum used for culture experi-
ments should also be taken into account. Similarly, presence of li-
poproteins, hormones and other mediators in plasma should also 
be taken into account when designing adequate control experi-
ments for testing functional effects of circulating MVs. Finally, in 
vivo effects of MV of human origin need to be tested in suitable 
animal models in order to avoid immune reaction to human bio-
logical material that would mask MV functional effect.

4. Microvesicles as regulators of cell 
 communication
In 1996, Raposo et al. demonstrated that EVs could be transferred 
between cells (95). This concept is based on the observation that 
EVs released from a given cell type interact through specific recep-
tor ligand with other cells, leading to trigger cell stimulation di-
rectly or by transferring the surface receptors (96). Since then, nu-
merous studies confirmed that EVs are an important mode of in-
tracellular communication and cargo delivery between cells, in-
cluding platelets, endothelial cells, and monocytes. Hence, it is 
now recognised that EVs are an integral part of the intercellular 
microenvironment and act as regulators of cell-to-cell communi-
cation (▶ Figure 2).

Ratajczak et al. proposed that MV-mediated cell-to-cell com-
munication emerged very early during the evolution as one of the 
first communication mechanisms (97). The first evidence for MV-
mediated protein transfer was observed by Barry et al. where 
bioactive lipids were functionally transferred via platelet MVs to 
endothelial cells leading to specific biological effects (98). Another 
example is the transfer of arachidonic acid between activated and 
resting platelets that results in the modulation of their procoagu-
lant responses (99).

Since then, significant progress has been made in the field of 
MV transfer. However, the study of MV release and uptake within 
in vitro and in vivo settings remains challenging, as there are no re-
liable detection methods to discriminate cells that uptake EVs 
from cells that do not. Recently, a promising novel tool using Cre-
loxP system has been developed to directly identify the fluor-
escently marked Cre-reporter cells that take up EVs released from 
Cre recombinase–expressing cells (100).

4.1 MV uptake and clearance

The mechanisms controlling vesicle uptake and internalisation are 
still a matter of debate. Various mechanisms have been proposed, 
including endocytosis (101), phagocytosis (102) and plasma or en-
dosomal membrane fusion (103). Their molecular mechanisms 
have been validated using antibodies to test the role of specific li-
gands or receptors, and chemical inhibitors to block specific up-
take pathways. A recent study has shown specific differences be-
tween exosomes and MVs for transferring genetic information 
(104). In particular, MVs, but not exosomes, can functionally 
transfer loaded reporter molecules to recipient cells. These results 
have significant implications for the understanding of EVs role in 
cellular communication and further development of EVs as ve-
hicles for macromolecule delivery.

Several studies have also demonstrated rapid clearance of MVs 
of different cellular origin from the circulation, mainly by liver and 
spleen phagocytes (55, 105–107). However, there is no definitive 
mechanism regarding the cell types involved in uptake and the po-
tential consequences of such uptake. The presence of externalised 
PS is of vital importance for effective uptake through glycoproteins 
Del-1 or lactadherin bridging MV’s PS and cellular integrins on 
endothelial cells and macrophages, respectively (106, 108, 109). 
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Recovery MV

Confirm MV identity

Contamination

Enrichment of MV

Starting material, for example plasma or conditioned cell culture medium, will 
contain MVs, proteins and lipoproteins. To determine the recovery of MVs, 
measure MVs before (starting material) and after isolation, and express the 
recovery as [concentration isolated MV]/[concentration MVs in starting ma-
terial] × 100 %. Confirm the identity of MVs in obtained fraction(s) by elec-
tron microscopy. Finally, to determine the (relative) enrichment of isolated 
MVs compared to the starting material, measure the concentration of pro-
tein and lipoprotein before and after isolation, and calculate the ratio of 
[MV concentration]/[protein concentration] and [MV concentration]/[lipo-
protein concentration]. *MVs cannot be visualised directly in most fluids 
due to the presence of proteins and other contaminants.

Measure MV

Electron Microscopy

Measure protein
Measure lipoprotein

EV/protein ratio
EV/lipoprotein ratio

Starting 
material

+

N/A*

+
+

+
+

Isolated 
MV

+

+

+
+

+
+

Table 1: Measuring the efficiency of MV isolation procedures.
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The receptor tyrosine kinases Tyro3, Axl and Mer and their li-
gands protein S and Gas6 are also involved in the PS-dependent 
uptake of MV by macrophages and endothelial cells (110). In addi-
tion, lipid raft–mediated endocytosis contributes to MV internali-
sation in human brain endothelial cells, but not in those originat-
ing from human umbilical vein (109, 111). MV uptake also de-
pends upon how they are produced. For instance, stimulation of 
human aortic endothelial cells with tumour necrosis factor α 
(TNF-α) leads to the formation of two populations of MVs, with 
distinct miRNA content (112). MVs rich in miRNAs are taken up 
much faster than the other MV population, suggesting that en-
dothelial cells could differentially recognize MVs generated upon 
different molecular cues.

4.2 Cargo transfer

MVs influence behaviour of target cells in multiple ways: by di-
rectly activating cell surface receptors via protein and bioactive li-
gands, by transfer of cell surface receptors or delivery, including 
transcription factors, mRNA and non-coding RNA. The bioactive 
ligands exposed on the MV surface are responsible for several im-
portant regulatory processes; for instance, direct stimulation of en-
dothelial cells with MV- associated CD40 ligand (CD40L) stimu-
lates angiogenic responses in vivo (113). Moreover, MVs can 
transfer the adhesion molecule CD41 (Integrin alpha-IIb) from 
platelets to endothelial cells, conferring the latter pro-adhesive 
properties (114). Transfer of the chaemokine CCL5 (RANTES) ex-
posed on platelet MVs to target endothelial cells by GPIIb/IIIa and 
JAM-A dependent mechanisms contributes to monocyte recruit-
ment (115). Furthermore, intercellular adhesion molecule-1 

(ICAM-1) is transferred, by a PS-dependent mechanism, from 
MVs isolated from atherosclerotic human plaques and function-
ally integrated into endothelial cells following membrane fusion, 
resulting in increased monocyte adhesion and transmigration 
(116).

The presence of functional mRNA in EVs was first described in 
2006 for murine stem cell-derived vesicles (117). EVs, however, 
could also transport mRNA fragments (118), long non-coding 
RNA (119), miRNA (120, 121), ribosomal RNA (rRNA) (119) and 
fragments of tRNA-, vault- and Y-RNA (122). This concept that 
non-coding RNA, and specifically miRNA, are transported into 
extracellular spaces, together with the evidence that exchange of 
miRNAs between cells can be accomplished through EVs, led to a 
revolutionary hypothesis of the existence of a miRNA vesicle-me-
diated communication system. Embedding of miRNAs in EVs 
could explain their resistance to nucleases when released outside 
the cell (123, 124). A large fraction of miRNAs exported by cells 
also associates with the Argonaute (Ago) protein family (125). 
Some studies report absence of RISC complex proteins (including 
Ago2) in the exosomes sub-group of EVs (126), whereas others re-
port presence of Ago2 protein (127). In this regard, RISC proteins 
in EVs could process precursor microRNAs (pre-miRNAs) into 
mature miRNAs, inducing the cell-independent microRNA bio-
genesis (128). This is an exiting novel area of research that requires 
caution due to numerous potential pitfalls in the interpretation of 
the data as changes in miRNA content may not result in functional 
changes in the target cell.

Endothelial EVs can stimulate repair by functionally influenc-
ing endothelial target cells. For instance, endothelial MVs and 
apoptotic bodies can transfer functional miR-126 to target en-

Ridger, Boulanger et al. Microvesicles in vascular homeostasis and diseases

Figure 2: Molecular component and pathways used by MVs to regu-
late cell communication. MVs may transfer membrane components and 
cytosolic and nucleic acids to the target cell by internalisation or following 
membrane fusion. MVs interactions with membrane-associated receptors 

may induce specific responses in target cells. Uptake of some mediators, such 
as miRNA, induces reprogramming of target cells. Receptors present on MV 
surface could be recycled and presented on the surface of the target cell.
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dothelium to promote CXCL12-mediated angiogenic cell recruit-
ment for atheroprotection or re-endothelialisation after endothe-
lial injury in mice by stimulating endothelial migration and prolif-
eration, due to downregulation of RGS16 and SPRED1, respect-
ively (121, 129). Endothelial p75 neurotrophin receptor activates 
the NF-κB signalling, inducing miR-503 transcription and the 
shedding of endothelial MVs by triggering the expression of Rho 
kinase (130). Intriguingly, miR-503-containing endothelial MVs 

are taken up by pericytes in vivo leading to, downregulation of 
miR-503 target genes, EFNB2 and vascular endothelial growth fac-
tor A (VEGFA), and increased vessel permeability (130). Fur-
thermore, miR-143 and miR-145 packaged in endothelial EVs re-
leased under shear stress are taken up by smooth muscle cells, 
where they downregulate target genes, inducing atheroprotective 
effects (131). Finally, circulating MVs from patients with coronary 
artery disease are deficient in Del-1, a glycoprotein mediating their 
endothelial uptake. Ex vivo, this led to a reduced uptake of MV-as-
sociated miRNAs (miR-17, miR-19a, miR-21, miR-92a, miR-146a, 
miR-222, and miR-223) in recipient cultured endothelial cells 
(132).

5. Endothelial microvesicles

The suggestion that endothelial MVs are causative agents in vascu-
lar pathology has arisen from their numerical increase in a range 
of diseases that have been extensively reviewed (133–135). En-
dothelial derived MVs carry endothelial proteins such as adhesion 
molecules (VE-cadherin, platelet endothelial cell adhesion mol-
ecule 1, intercellular adhesion molecule 1 (ICAM-1), E-selectin, αv 
integrin), growth factors (Endoglin, S-Endo 1 (CD146), VEGF re-
ceptor 2 (VEGF-R2, haemostatic molecules (von Willebrand fac-
tor, TF, TF pathway inhibitor (TFPI), tissue plasminogen activator, 
plasminogen activator inhibitor 1, endothelial protein C receptor 
(EPCR)) or active components (Endothelial NO synthase, uroki-
nase type plasminogen activator) (136). They have also been re-
ported in human and murine plasma (137, 138), vitreous fluid 
(139) and in inflammatory lesions such as the atherosclerotic 
plaque or ischaemic tissues (140) (▶ Table 2). The composition of 
endothelial MVs depends upon the stimulus triggering their bio-
genesis, and their components originate from the plasma mem-
brane, the cytosolic fraction, the cytoskeleton or from mitochon-
dria (8). Elevated numbers of endothelial MVs were first reported 
in 1999 in disease populations, and were thus considered as poten-
tial diagnostic and prognostic biomarkers (137) (▶ Table 2).

5.1 Regulation of endothelial MV formation

Circulating levels of endothelial MVs are thought to reflect a bal-
ance between cell stimulation, proliferation, apoptosis and other 
forms of cell death (136). Biological factors that are pertinent to 
vascular health and haemostasis are involved in the generation of 
endothelial MVs (▶ Figure 3). Among them, inflammatory and 
coagulation factors (such as TNF-α and other inflammatory cyto-
kines, bacterial lipopolysaccharides (LPS), reactive oxygen species 
(ROS), plasminogen activator inhibitor, thrombin, camptothecin, 
C-reactive protein and uraemic toxins, oestrogens) are able to in-
duce in vitro endothelial MV generation (66, 136, 141–145). Inter-
estingly, endogenous nitric oxide (NO) and oxidised lipids (146) 
also impact on MV generation by cultured cells. Although little is 
known on the precise mechanisms involved in endothelial MVs 
release in vivo, the role of arterial shear stress has recently been 
demonstrated (68, 147). Generation of endothelial MVs from the 
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Cardiovascular risk factors

Age

Female gender

Hypertension

Hypercholesterol -
aemia

Hypertriglyceridaemia

Smoking, Pollution

Obesity

Diabetes

Metabolic syndrome

Family history CVD

Physical inactivity

Atherosclerotic vascular diseases

Subclinical athero-
sclerosis

Coronary calcification

Acute coronary 
 syndrome

Stable coronary 
 disease

Cardiac sudden death

Acute stroke

Cerebrovascular 
atherosclerosis

Peripheral artery 
 disease

End-stage renal 
 disease

CVD: cardiovascular diseases; TF: tissue factor; PS+ MVs: MVs expressing 
phosphatidyl serine; ND : Not determined.

MV subpopulation

Endothelial, TF+MV, 
PS+MV

Endothelial, Platelet, 
PS+MV

Endothelial, platelet

Endothelial,  lymphocyte, 
 leucocyte, platelet

Endothelial

Endothelial, platelet, leu-
cocyte

Endothelial, platelet

Endothelial, platelet, leu-
cocyte, TF+MV

Endothelial

ND

Endothelial

Leucocyte, platelet, lymp-
hocyte,  endothelial

Endothelial, Platelet

Endothelial, Platelet, 
monocyte

Endothelial, Platelet

Endothelial

Endothelial, platelet, leu-
kocyte

Endothelial

Platelet

Endothelial, platelet, ery-
throcyte

Changes

↑, ↓

↑

↑

↑

↑

↑

↑

↑

↑

ND

↑

↑

↑

↑

↑

↑

↑ or no 
change

↑

↑

↑

References

(294, 295)

(296)

(297, 298)

(249, 299)

(298, 300)

(148, 301–303)

(304–307)

(308–310)

(298, 311)

ND

(312)

(249, 253, 299, 
313)

(314)

(13, 310, 
315–319)

(316, 320)

(321)

(189, 322–324)

(325)

(326–328)

(329, 330)

Table 2 : Plasma MV changes in subjects with cardiovascular risk 
factors and in patients with atherosclerotic vascular diseases.
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endothelium may be considered a hallmark event reflecting the 
beginning of endothelial dysfunction. For instance, passive expo-
sure to cigarette smoke rapidly (within 30 minutes) increases 
circulating EMVs in healthy subjects concomitantly with impaired 
endothelial function (148).

Evaluating the intracellular transcriptional events leading to en-
dothelial MV formation in response to thrombin evidenced an 
early step involving genes linked to cytoskeleton re-organisation, 
such as Rho-kinase ROCK-II, followed by a second step mediated 
by TNF related apoptosis-inducing ligand (TRAIL)/Apo2L, a cyto-
kine belonging to the TNF-α super-family (149). The transcription 
factor NF-κB was required both for the early and late production 
of endothelial MVs. The activation of the p38 mitogen-activated 
protein kinase, as well as the activation of Rho kinase and extracel-
lular signal-regulated protein kinases 1 and 2 by low shear stress 
were also identified as critical pathway in the production of en-
dothelial MV (68, 136), thus providing a paracrine loop enhancing 
the endothelial response to inflammation (▶ Figure 3).

5.2 Multifaceted roles of endothelial MVs in vessel 
wall homeostasis

The expression of anionic phospholipids, especially PS, able to 
bind and activate coagulation factors contributes to the procoagu-
lant potential of endothelial MVs (137, 150). Moreover, different 
agonists induce the generation of endothelial MVs expressing tis-
sue factor (137, 146, 150, 151). Interestingly, endothelial MVs bind 
to monocytes and induce tissue factor expression and activity 
(152). However, the limited evidence of endothelial MV contribu-
tion in vivo frustrates our knowledge of their role in coagulation 
and thrombosis. The thrombogenic activity of endothelial MVs 
has been demonstrated in a mouse model after exogenous injec-
tion of TF positive endothelial MV (153). However, selective dele-
tion of tissue factor in endothelial cells has no effect on coagu-
lation activation in a murine model of endotoxaemia (154). There-
fore, the increased levels of tissue factor positive endothelial MV 
detected in diseases such as sickle cell or sepsis (155, 156), suggests 
that TF positive endothelial MV may be selectively associated to 
certain disease states, and possibly to subsets of endothelial MVs 
that remain to be characterised. Interestingly, other studies have 
provided evidence that endothelial MVs can also exhibit antico-

Ridger, Boulanger et al. Microvesicles in vascular homeostasis and diseases

Figure 3: Biogenesis and biological effects 
of endothelial MVs. Endothelial MV release 
can be triggered following cell activation or 
apoptosis. The resulting remote biological effects 
of endothelial MVs can be either protective or 
deleterious. 
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agulant and vasculo-protective activity: they can deliver miR-126 
or thromboxane A2 to the vessel wall (157), and can expose EPCR 
and activated protein C (APC). APC positive endothelial MV dis-
play anticoagulant and cytoprotective properties effects on en-
dothelial cells through the reduction of apoptosis (158). Moreover, 
endothelial MV also behave as a catalyst, supporting plasmin gen-
eration by plasminogen (94), which confer them fibrinolytic prop-
erties with a pivotal role for clot dissolution. These findings illus-
trate the broad scope of mechanisms involving endothelial MVs in 
haemostasis and thrombosis, and their potential beneficial capac-
ity to influence the evolution of the disease (▶ Figure 3).

5.3 Role of endothelial MVs in inflammation

Inflammatory mediators enhance endothelial MV biogenesis in 
vitro. An increase in endothelial MVs is evident in many inflam-
matory–type diseases such as atherosclerosis, diabetes or autoim-
mune conditions (▶ Table 2). There is a direct correlation between 
endothelial MV number and IL-6, both in vivo and in vitro, imply-
ing a close relationship between endothelial vesiculation and clas-
sic inflammatory pathways of cytokine production (159, 160). En-
dothelial MVs may not only reflect the activation status of the cells 
but also confer further systemic activity, indicating that they are 
not only the consequence, but could also be involved in regulating 
inflammation. In addition, interaction between endothelial MV 
and naïve endothelial cells triggers pro-inflammatory responses 
assessed by up-regulation of ICAM-1 mRNA expression and sol-
uble ICAM-1 shedding from targeted cells, an effect that was no 
longer observed using endothelial MV from un-stimulated en-
dothelial cells (159). Endothelial MVs injected intravenously in 
mice lead to increased systemic and pulmonary levels of IL-1β and 
TNFα, correlating with an increase in neutrophils in the lung 
(161).

5.4 Endothelial MVs, angiogenesis and vessel 
 remodelling

The angiogenic effect of endothelial MVs is highly dependent on 
their composition. Some studies reported that endothelial MVs 
impair angiogenesis, but the underlying mechanism remains un-
clear. The role of ROS may be important as in vitro, angiogenesis 
impairment can be rescued with a cell permeable superoxide dis-
mutase mimetic (162). Physiological and pathological concen-
tration of endothelial MVs injected into LDLR-/- mice on a high fat 
diet inhibited angiogenesis in the heart with effects on endothelial 
nitric oxide synthase and NO generation (163). This inhibitory ef-
fect on tube formation was also reported by MVs from diabetic pa-
tients with coronary artery disease (164). Overall it would appear 
that endothelial MVs inhibit angiogenesis. However, endothelial 
MVs from human microvascular endothelial cells were shown to 
induce angiogenesis at low concentration, through plasmin gener-
ation, whereas higher concentrations have opposite effect (94). 
Within the atherosclerotic plaque, CD40L positive MV enhance 
endothelial proliferation, promoting in vivo neovessel formation 
and thus favouring intra-plaque haemorrhage (113). Ligation of 

endothelial CD40 with CD40L positive endothelial MVs modulate 
VEGF and PI3K: AKT activation and cell proliferation (113). Im-
portantly, since some endothelial MVs can both promote or in-
hibit angiogenesis, appropriate animal models are required in 
order that the effects of endogenous release can be assessed.

5.5 Conclusion

Endothelial MVs are multifaceted biological vectors playing a role 
in both physiological and pathological conditions. Their pleiot-
ropic roles identify them as active intercellular communicators po-
tentially contributing to the regulation of vascular homeostasis. 
Dysregulation of endothelial MV biogenesis and its biological ac-
tivities may be an surrogate marker of vascular dysfunction and as 
such provide potential biomarkers of endothelial dysfunction 
(▶ Table 2). Although this prospect is challenging, a fully under-
standing of endothelial MV biogenesis and in vivo demonstration 
of their role in pathophysiology is required and will undoubtedly 
uncover new areas of vascular biology.

6. Platelet microvesicles

Platelets are anucleated fragments released in the bloodstream 
from their cellular precursor, the megakaryocyte (165). Outnum-
bered in blood by red blood cells (RBCs) only, platelets are recog-
nised for their role in haemostasis and thrombosis. With their 
broad content in mediators and expression of receptors for im-
mune regulatory functions, evidence also supports their contribu-
tion to immunity, inflammation and tissue repair (166, 167). 
Hence, studies reveal that vesicles released by platelets also convey 
an elaborate set of cargo and might play roles other than the sup-
port of coagulation and thrombosis, such as angiogenesis, cancer, 
cardiovascular diseases and inflammation (4, 134, 168, 169) 
(▶ Table 2).

As the megakaryocyte is a large cell that can undergo several 
rounds of DNA replication without cellular division, its cytoplasm 
is particularly rich in miRNA and other factors, which are trans-
ferred to platelets during proplatelet formation. Thus, albeit an-
ucleated, platelet cytoplasm contains miRNA and the miRNA ma-
chinery such as Ago2 (170), which have been reported to be en-
capsulated within MVs (171). Growth factors (e. g. platelet-derived 
growth factor, transforming growth factor β) (172), enzymes (e. g. 
12-lipoxygenase, thromboxane synthase) (98, 173), cytokines (e. g. 
IL-1) (174, 175), transcription factors (173) and even functional 
mitochondria (173, 176) (▶ Figure 4) are found in platelet MVs, 
and can be efficiently internalised by other cells such as endothe-
lial cells (106, 171), macrophages (55, 177), and neutrophils (173). 
Whereas the internalisation process in endothelial cells implicates 
MV’s PS recognition by receptors such as developmental endothe-
lial locus-1 (Del-1) and the interaction of the receptor tyrosine ki-
nase Axl with its ligand Gas6 found at the surface of MVs (55, 
110), the internalisation by neutrophils is also tightly regulated 
and requires 12-lipoxygenase activity present within MVs (173). 
Hence, platelet MVs are retrieved inside neutrophils in the joints 
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of arthritic mice, and the ablation of the gene coding for 12-lip-
oxygenase (ALOX12) abrogates the internalisation of MVs and 
consistently reduces inflammation.

6.1 Regulation of platelet MV production

In spite of their small size, approximately 3 µm in diameter, pla-
telets contain an impressive membrane reservoir. The platelet plas-
ma membrane comprises sinuous invaginations called the open 
canalicular system, which channels provide an important source of 
membrane permitting the formation of filopodia and spreading 
(up to 420 %) on activation (178). Furthermore, impressively long 
(250 µm) membrane tendrils, called flow-induced protrusions, 
trail into the blood vessel from adherent activated platelets under 
flow conditions (179). Thus, although platelets are small, their 
abundance in blood and their important membrane content might 

explain how platelets represent a dominant source of MVs in 
blood in physiological conditions (49).

Different platelet stimuli can trigger platelet activation via dif-
ferent signalling pathways leading to an increase in intracellular 
calcium. Studies have shown distinct potencies at inducing MV re-
lease, e. g. Ca2+ ionophore > thrombin > the glycoprotein VI 
(GPVI) agonist cross-linked collagen related peptide (CRP-XL) > 
co-stimulation with thrombin and CRP-XL > collagen > LPS > 
thrombin receptor activating peptide > adenosine di-phosphate 
(6). Mechanistically, platelet agonists induce the rise in intracellu-
lar calcium concentration, which in turn triggers cytoskeleton 
cleavage through calpain activation and cellular contraction and 
blebbing (30, 180). In addition to platelet agonists, platelet MV 
formation can also be triggered by physical stimuli (shear stress, 
hypoxia) or prolonged storage.

Ridger, Boulanger et al. Microvesicles in vascular homeostasis and diseases

Figure 4: Composition of platelet-derived MVs. Platelet MVs are produced by activated platelets on disruption of membrane asymmetry and plasma 
membrane budding (steps 1 and 2). Although platelets are anucleated, they do contain a broad arsenal of molecules, which can be transferred to platelet 
MVs. 
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6.2 Platelet MVs in physiological and pathological 
conditions

A combination of cryo-electronic microscopy and flow cytometry 
determined that the blood at steady state contains approximately 
107 platelet MVs exposing PS per ml, pointing to a constitutive 
production of MVs by platelets, potentially due to shear stress and 
platelet aging. However, studies suggest that instead, most of the 
MVs in blood in fact originate from megakaryocytes (4, 60, 181). 
Circulating MVs originating from megakaryocytes are distin-
guished from those derived from activated platelets by the pres-
ence of P-selectin, lysosomal associated membrane protein 1 and 
immunoreceptor-based activation motif (ITAM) receptors (4, 60, 
181). However, in pathological context during which platelets are 
activated, such as in rheumatic diseases (182), at least part of MVs 
in blood circulation were proven to originate from platelets (181). 
Whether platelet MVs contribute to the increased risks of cardio-
vascular diseases and thrombosis in patients with rheumatic dis-
orders (183), however, remains to be established.

Platelet activation also occurs in the presence of complement 
components (184) providing a possible explanation for the high 
concentrations of platelet MVs in diseases where complement-me-
diated platelet activation occurs, such as paroxysmal nocturnal 
haemoglobinuria and aplastic anaemia (185). This may indeed ex-
plain why therapy with eculizumab, a humanised monoclonal 
antibody acting as a terminal complement inhibitor, prevents 
thrombosis in patients with paroxysmal nocturnal haemoglobinu-
ria (186). Hence, with their procoagulant potential, platelet MVs 
may play their part in venous and arterial thrombosis. Indeed, pla-
telet MVs were demonstrated to play an important role in athero-
thrombotic process. Beyond being markers of platelet activation, 
platelet MVs in blood showed functional effects on atherothrom-
botic disease because they enhanced platelet and fibrin deposition 
on atherosclerotic arterial wall, promoting platelet adhesion, 
further recruitment of platelets and thrombus formation (187). 
Accordingly, elevated concentrations of platelet MVs are found in 
patients with acute coronary syndrome (188), transient ischaemic 
attacks and strokes (189, 190), diabetes with atherothrombotic dis-
ease and peripheral arterial disease (191), heparin-induced throm-
bocytopenia with thrombosis (192), as well as myeloproliferative 
neoplasms (193) (▶ Table 2). Platelet MVs also contribute to 
thrombosis in patients with haemoglobinopathies such as sickle 
cell disease and thalassaemia (194, 195). Interestingly, in poly-
transfused patients with thalassemia major, the number of platelet 
MVs augments following splenectomy, and consistently these pa-
tients have a higher tendency to develop thrombosis (196). 
Thrombosis is also prevalent in cancer pathophysiology, and 
studies suggest that it might be due, at least in part, to platelet MVs 
(197), although the cancer cells themselves represent an important 
source of MVs (150). Hence, platelet MV levels correlate with the 
aggressiveness of certain neoplasias, a high level being predictive 
of a poor clinical outcome (193, 197, 198).

Other molecules exposed in platelet MVs, in addition to phos-
phatidylserine, impact haemostasis and thrombosis. For instance, 
platelet MVs may bear activated protein C, a recognised antico-

agulant protein, and thereby have a protective effect in early sepsis 
(199). While platelets were reported to express TF, studies by dif-
ferent investigators failed to detect TF in both resting and activated 
platelets (150, 200–202). Monocytes, however, are a major source 
of TF, which is stored in an encrypted form. It is suggested that 
monocyte-derived MVs harbor functional decrypted TF, and that 
the formation of highly thrombogenic platelet MVs and monocyte 
MVs hybrids might explain why TF has been reported on platelet 
MVs (150, 200–203). Hence, P-selectin harbored by platelet MVs 
targets MVs to the thrombi at site of injury, and injection of MVs 
containing P-selectin improved the kinetics of fibrin formation 
and could normalise the bleeding time in a haemophilia mouse 
model (204, 205). Importantly, P-selectin, through binding with 
P-selectin glycoprotein ligand 1 (PSGL-1), recruited monocyte-de-
rived MVs expressing TF to the thrombus, and further amplified 
thrombosis (204, 205).

Whereas most studies on platelet MVs implicate the study of 
blood, platelet MVs are found in lymph and in the synovial fluid of 
patients with rheumatoid arthritis (175, 206, 207), suggesting that 
they can reach locations outside blood vessels. While platelet MVs 
might display a local pro-inflammatory activity through their cy-
tokine content, exposure of autoantigens and interactions with 
neutrophils (173, 175, 208), platelet MVs also deliver anti-inflam-
matory signals by the inhibition of IL-17 and IFN-gamma produc-
tion by a particular set of regulatory T cells (209), reportedly pres-
ent in rheumatoid arthritis (210), thereby enhancing the stability 
of the regulatory T cells in an inflammatory environment (209). It 
is not completely understood how platelet MVs egress the vascula-
ture, but it might implicate transportation by leukocytes and vas-
cular permeability (211). Hence, in vivo studies revealed gaps in 
the arthritic joint vasculature that permitted the accumulation of 
synthetic submicron microspheres outside blood vessels, pointing 
to a role of permeability in the process (211).

Constitutive platelet activation, such as seen in Stormorken’s 
syndrome, also called “inverse Scott’s syndrome”, leads to throm-
bocytopenia and bleeding tendencies (212). Platelets from Stor-
morken’s syndrome patients are in an activated state and therefore 
display PS on the outer surface due to a gain-of-function mutation 
in the sensing protein stromal interaction molecule 1 gene or a 
loss-of-function mutation of the gene coding for the calcium chan-
nel pore-forming protein ORAI1 (213, 214). As circulating platelet 
MVs are elevated in this pathology, it suggests, however, that pla-
telet MVs might not suffice to prevent bleedings in this condition 
(212).

6.3 Conclusion

Platelet MVs contain and elaborate cargo, which can be trans-
ferred to recipient cells, thus suggesting that platelet MVs might be 
implicated in development, angiogenesis, wound healing, tissue re-
generation and repair and remodelling, as well as cancer (169, 
215–217). Continuous research on the topic and improvement of 
the detection methods will reveal the different roles that platelet 
MVs might play in health and diseases.
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7. Leukocyte microvesicles

Leukocyte MVs have been shown to express adhesion molecules 
PSGL-1, CD11b, ICAM-1) (63, 116, 218), IL-1β (219), tissue factor 
(220) and complement receptor 3 (221). In addition to containing 
IL-1β, MVs also carry active caspase 1 (222), an enzyme member 
of the inflammasome machinery needed to cleave proIL-1β and 
proIL-18 into their bioactive secreted forms. These inflammasome 
containing vesicles were shown to also mediate apoptotic cell 
death. EVs released by membrane budding of leukocytes are pres-
ent in high amounts locally in inflamed tissues, and detected in the 
circulation. Immune cell activation, massive leukocyte death or 
lympho-proliferative processes have direct effects on the abun-
dance of leukocyte-derived MVs. One general feature of circu-
lating leukocyte-derived MVs is that their numbers in the circu-
lation vary in broad ranges. This can reflect the ability of the trig-
gered immune system to alter the number of its immune cells very 
dynamically depending on the innate and adaptive activating or 
suppressing signals. In line with this, the number of leukocyte-de-
rived MVs is substantially elevated in haematological malignancies 
(223–225), after severe trauma (226) and in sepsis (227, 228). In 
addition, levels of circulating leukocytes-derived MVs increase 
with the presence of cardiovascular risk factors and in patients 
with atherosclerotic vascular diseases (▶ Table 2).

As for platelets (4), accumulating evidence supports molecular 
and functional heterogeneity of leukocyte-derived MVs (221, 229, 
230). However, the scale and significance of leukocyte-derived MV 
diversity is probably underestimated, warranting further investi-
gation. While cluster of differentiation antigens provide crucial in-
formation about the cellular origin of the MVs, currently no tools 
to distinguish between activation- and apoptosis-induced leuko-
cyte MVs are available. Whether externalised PS on the surface of 
MVs is a specific indicator of apoptotic cell origin has not been de-
finitively demonstrated.

7.1 Regulation of leukocyte MV production

Leukocyte activation is usually associated with increased cytoplas-
mic calcium levels. For example, the engagement of antigen-spe-
cific receptors (T cell receptor and B cell receptor) on lymphocytes, 
Fc gamma receptors on natural killer cells and mast cells, and cy-
tokine and co-stimulatory receptors results in increased cytosolic 
calcium ion concentrations (231) (▶ Figure 5). In vitro leukocyte-
derived MV release can be triggered by the calcium ionophore 
A23187 (232). Calcium signaling in immune cells is crucial for 
controlling a wide array of adaptive cell responses including prolif-
eration, differentiation and various effector functions (e. g. cyto-
kine production); this list can be extended to ”vesiculation” (i. e. 
MV release) as a process in the case of which elevated cytosolic 
calcium level is a major trigger (233–235)(also discussed in Section 
2 of this article). Under pro-inflammatory conditions (e. g. during 
infection or autoimmune diseases), immune cell activation is as-
sociated with a leukocyte-derived MV release. Importantly, in the 
extracellular space, the released MVs are present in concomitance 
with soluble pro-inflammatory mediators (e. g. cytokines), and 

thus, they can have combined effects on cells (▶ Figure 5). Indeed, 
T-cell derived MV-s were shown to synergise with TNF in induc-
ing IL-8 expression by monocytes (236). The combined effects of 
different MVs with i) other EV subpopulations and/or ii) with sol-
uble mediators are currently largely unexplored.

7.2 Role of leukocyte MV in inflammation

Inflammatory disease lesions are often hypoxic (232). Given that 
hypoxia is a known inducer of MV release (237), it may also con-
tribute to the overall, pro-inflammatory condition-related induc-
tion of leukocyte-derived MV release. The released MVs in turn 
may amplify the inflammatory processes affecting different tissues 
(238). This is clearly exemplified during sepsis (a systemic inflam-
mation) that leads to increased levels of circulating MVs released 
by granulocytes (227, 228). Due to their inherent heterogeneity 
overviewed recently (239), besides exerting pro-inflammatory ef-
fects on cells such as inducing cyclooxygenase 2, NF-κB or indu-
cible NO synthase (240–243), MVs can also play regulatory/anti-
inflammatory roles as well (244–248).

7.3 Evidence for leukocyte MVs in disease

Important evidence linking presence of leukocyte-derived MVs 
and disease in vivo comes from a study in which MVs were studied 
in plaque and plasma of 26 patients undergoing carotid endarte-
rectomy. Atherosclerotic plaques contained MVs predominantly 
released by leukocytes (macrophages, lymphocytes and granulo-
cytes) while in contrast platelet-derived MVs were found in plas-
ma of the same patients (140). Further evidence connecting leuko-
cyte-derived MVs with disease is that stable statin-treated het-
erozygous familial hypercholesterolaemia patients were found to 
have elevated numbers of lymphocyte- and monocyte-derived 
MVs. In addition, circulating MVs positive for T lymphocyte 
antigen determinants have been identified as markers of lipid-rich 
atherosclerotic plaques in familial hypercholesterolemia (249) 
(▶ Table 2). Accordingly, patients with high-grade carotid stenosis 
presented with high levels of leukocyte MVs (250) and a character-
istic circulating leukocyte MV-signature containing lymphocytes, 
monocytes and activation markers (CD66b) in the systemic circu-
lation reflected the formation of coronary thrombotic occlusions 
in patients with acute myocardial infarction (13), to whom mono-
cyte MVs related to the long-term prognosis of cardiovascular 
death (251). Moreover, in a recent prospective five-year follow-up 
randomised, controlled, multicentre study, T lymphocyte-derived 
circulating MVs were found to be elevated in high cardiovascular 
risk subjects without clinical atherosclerosis who had a major car-
diovascular event during the five-year follow-up period (252) 
(▶ Table 2). Finally, the role of leukocyte-derived MVs is further 
supported by the observation that circulating leukocyte-derived 
MVs are predictors of subclinical atherosclerosis burden in asymp-
tomatic individuals (253) (▶ Table 2). Altogether, these findings 
suggest that leukocyte MV shedding relates to atherosclerotic 
CVD progression, providing a link between inflammation and 
thrombosis.
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7.3 Lymphocyte MVs

Apoptosis is associated with the release of MVs (254), and athero-
sclerotic plaques have been reported to be enriched in apoptotic 
lymphocytes (255). Hence, lymphocyte MVs have been detected in 
atherosclerotic plaques (256). Furthermore, circulating T lympho-
cyte-derived MVs are elevated in familial hypercholesterolemia 
patients (249). Thus, the link between lymphocyte derived-MVs 
and atherosclerosis is supported by numerous reports. T cell-de-
rived MVs were shown to impair endothelial function (257). On 
the other hand, vascular hyperreactivity was also documented and 
lymphocyte-derived MVs were shown to inhibit angiogenesis 
(258). The LDL receptor has been proposed to mediate the uptake 
of T cell-derived MVs and influence the VEGF pathway (259).

Also, data suggest a link between lymphocyte-derived MVs and 
preeclampsia. In preeclamptic women T cell- and granulocyte-de-
rived MVs were increased compared with normal pregnancy 
(235). Furthermore, synovial fluid CD8+ T cell-derived MV pro-
files were found to be characteristic for rheumatoid arthritis (206) 
suggesting that leukocyte MVs may potentially hint at locally acti-
vated immune cell populations.

Surprisingly, there are very few reports published on circulating 
B cell-derived MVs, mainly related to B cell malignancies (224, 
260–262).

7.5 Conclusion

MVs derived from leukocytes can play effector roles in the patho-
physiological mechanisms of different diseases. Recent advances in 

immunology have identified high number of immune cell subsets. 
From the MV research perspective, MVs secreted by these im-
mune cell subsets, represent a highly promising, however, yet mi-
nimally explored area of research that deserves further attention.

8. Red blood cell microvesicles

RBCs are 700,000 to 5.2 million to a microlitre of blood. Any 
stimulus of RBC vesiculation, such as calcium influx and spicule 
extension (263–270), may thus trigger a significant storm of RBC-
derived MVs (271). Indeed, RBC MVs are amongst the most com-
mon circulating vesicles, and they are particularly elevated during 
intravascular haemolysis, in ST-segment elevation myocardial in-
farction (272, 273) related to myocardial damage (273), in sickle 
cell disease (50, 274–277), thalassaemia (277–279) and during 
blood pocket storage and aging (280–283), among others. RBCs 
are also thought to release MVs spontaneously during reticulocyte 
maturation (284) and upon Plasmodium falciparum replication 
(285).

RBC-derived MVs display many characteristics and activities 
common to other MVs, including externalisation of PS, with sub-
sequent pro-coagulant effects (50, 279, 286–288), complement 
pathway activation (289) and a pro-inflammatory impact on blood 
vessels (290). RBC-derived MVs, like their mother cells, are also 
unique due to the quantity of iron that they carry. Each RBC con-
tains about 250 million molecules of haemoglobin, each with four 
prosthetic haeme groups and four iron ions. Leakage of haemoglo-
bin out of only 0.1 % RBC results in an increase up to 2 µM in plas-

Figure 5: Leukocyte MV formation. MV release by leukocytes is triggered 
by i) engagement of various cell surface receptors by activating ligands that 
lead to increased cytosolic calcium ion concentration as well as ii) by hypoxic 
environment. MVs and conventional mediators (cytokines) are present simul-

taneously in the extracellular space and may exert combinatorial effects on 
cells. A few pathological conditions with confirmed role of leukocyte-derived 
MVs are listed. 
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ma haemoglobin. These significant concentrations of haemoglo-
bin attracted attention with respect to vesiculation during intrav-
ascular haemolysis.

One relevant question relates to the retention of haemoglobin, 
haeme and iron by MVs during RBC vesiculation and haemolysis. 
MV depletion experiments using differential centrifugation or size 
fractionation of plasma suggest that 5 % to 40 % of extracellular 
haemoglobin associates with RBC membrane fragments during 
sickle cell disease (291), thalassaemia (279) and blood aging (281). 
Haemolysis, as defined today, is thus likely to comprise vesicu-
lation as a mode of haemoglobin exit from RBC and a mode of 
presentation in plasma, beyond haeme association with classical 
partners such as haemopexin, haptoglobin, albumin and LDL.

A second question pertains to the redox state of MV-contained 
haemoglobin, haeme and iron. The pseudoperoxidase activity of 
these molecules is linked to the level of enzymatic control applied 
by porphyrins and globins onto the iron atoms. This may prove 
critical to the pathophysiological impact of RBC-derived MV. 
Healthy MVs may contain mostly intact haemoglobin, like inert 
RBCs. Pathological RBC MVs may contain excess haeme and 
trigger radical oxygen species production by vascular endothelial 
cells through TLR-4 signaling, like in sickle cell disease (291, 292).

Early biochemical analyses suggested that haemoglobin re-
mains functional and able to exchange gases, judging by the NO-
depleting and vaso-constrictive effects of RBC MV (281, 283, 291, 
293). RBC MVs may contain a significant proportion of meth-hae-
moglobin (291), an oxidised metabolite prone to releasing free 
haeme. When RBC vesiculation is coupled to haemoglobin injury, 
MV may transport lipophilic, protein-free haeme (▶ Figure 6). 
This association would prove deleterious, as haeme embedded into 
membrane phospholipids is known to release iron and catalyze ex-
tensive oxidative degradation of nearby lipids and proteins. RBC 
MVs may thus sequester haeme away from classical recycling 
pathways, and mediate unique effects through a mixed load of 
haeme and lipid metabolites.

9. Limitations and future directions

During their formation process, MVs retain functional receptors, 
proteins, bioactive lipids, organelles and genetic material from the 

parental cells, and behave as active sensors, communicators, and 
effectors on their surrounding environment. There are a number 
of important points that need to be considered when designed and 
analysing experiments to investigate the presence and function of 
MVs:
• Numerous pitfalls could occur during their isolation procedure 

and their characterisation, such as the presence of contaminat-
ing protein. Therefore, one should rely on at least two different 
technical approaches to identify them, with consideration given 
to the limitations of each approach. We should also bear in 
mind that pharmacological interventions in patients can 
modulate MV circulating levels, either directly or indirectly.

• As highlighted in this review, there is an emerging role for MVs 
in vascular homeostasis and disease. However, further research 
is needed to pin down the molecular mechanisms involved to 
further elucidate MVs potential as therapeutic targets or vec-
tors.

• To accelerate the progress with biomarker discovery, we need to 
enhance our understanding of the biological role played by spe-
cific cell derived MVs in haemostasis. For example, under-
standing the role of EMVs in vascular inflammation will enable 

Figure 6: Red blood cell (RBC) MVs are 
unique transporters of haeme. RBCs release 
MVs under stress, probably from membrane buds 
called spicules. RBC MVs contain high amounts 
of haemoglobin originating from their parent cell 
cytoplasm. RBC MVs may thus transport un-
usually high amounts of haeme and iron, bring-
ing these highly pro-oxidant molecules in close 
proximity of their target cell membranes, with a 
vast array of possible pathophysiological conse-
quences, which remain to be explored.
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routine quantification of EMVs in patients’ samples to be inter-
preted in a more meaningful manner.

• MVs, and more generally extracellular vesicles, are becoming 
an intense area of research as therapeutic targets in heart dis-
eases. In addition, improved characterisation of their content 
and surface molecule expression will aid in integrating infor-
mation regarding their function in normal physiology with 
their pathological role.

Central to the above is the optimisation and standardisation of iso-
lation and analysis of MVs and the use of robust experimental 
controls.
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